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THE LAMINAR BOUNDARY LAYER IN A RADIATING-ABSORBING
GAS NEAR A FLAT PLATE

V. P. Zamurayev (Novosibirsk)

The steady-state problem of the laminar flow of a radi- */73
ating-absorbing gas in the boundary layer near a flat plate
has been considered in several papers [1-6]. However, due to
the assumptions made by their authors as regards the nature
of the radiation, the applicability of the solutions obtain-
ed therein is limited. The degree of exactness of the
methods they employed in specifying the radiation is more-
over uncertain.

In the present paper we shall be concerned with the
laminar boundary layer near a plate. We intend to use
a more exact description of radiation transfer. Heat trans-— .
fer takes place by ordinary heat conduction and radiation.
A number of simplifying assumptions already used in the afore-
mentioned papers are made about the radiation. Thus, we ap-
ply the hypothesis of local thermodynamic equilibrium accord-

ing to which the radiating power and coefficient of absorption -

are related by Kirchhoff's law. The medium is assumed to be
gray. The radiation flux along the plate is neglected in
comparison with the radiation flux across the plate. Such an
assumption is valid provided the temperature variation along
the plate over the length of the radiation path is small.

The effect of but slight temperature variation along the plate
is to render the radiation flux across the plate determinable
by the temperature profile in the given section. The wall

is assumed to be absolutely black. The physical properties

of the medium may be temperature dependent.

The asymptotic behavior of heat transfer far away from
the tip of the plate is considered. A difference method of
solving a system of partial differential equations with a com-
plex integrodifferential energy equation is used to solve the
problem over the entire length of the plate. 1In its basic
features, this method is similar to the difference method used
to solve boundary layer equations without regard for radiation
[7-9]. The paper concludes with a discussion of the results
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of computing one of the cases considered in [1]. The

character of heat transfer and the possibility of specify-

ing radiation in the radiant heat conduction approximation
are investigated.

1. We consider the steady-state laminar boundary layer near a flat plate.

In the variables x (the longitudinal coordinate) and y (the transverse
coordinate) the problem posed is described by the system of equations

dpu dpr -
or + ay =0
o du du a du
v Pt = By (1.1)
aT aT 3q u
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where u and v are the components of the velocity along and across the plate, T
the temperature, p the density, u the coefficient of viscosity, c¢_ the specific

heat capacity at constant pressure, and q total heat flux along y, equal to the
sum of fluxes due to ordinary heat conduction 9, and to radiation 9

q=qm-+gr (1.2)
The heat flux 9, is defined in the usual way,
Gm =~ — ‘
Im=—4oT /5y (1.3)
where X is the thermal conductivity coefficient.
The heat flux due to radiatiom q, can be found by using its expression /74

obtained by integrating over the spectrum and solid angle the intensity of radi-
ation in the form of the formal solution of the transfer equation meltiplied by

the cosine of the angle between the direction of radiation and the y-axis, with

due allowance for the assumption of grayness of the medium and no regard for

the temperature variation along x over several radiation path lengths,

9 = 26 T By (1) + | 2674 By (v — 1)t - 2 P AT (1.4)
0 < .

Here o is the Stefan-Boltzmann constant, En(t) the integral exponential

function, and 1 the optical thickness of the gas layer given by the equation
(1 is the radiation path length)
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The subscript 0 denotes the values of the paraﬁeters at the wall. The
\ quantities p, u, cp, A, 1 are generally functions of temperature.

Instead of the equation of discontinuity we can consider the two equiva-
lent equations (¢ is the stream function)

puz_gy_, pv==—¥ g‘:' (1.6)

The solution of system (1.1)-(1.5) will be sought in the region x > 0, ¥y
> 0 under the boundary conditions

u=v=0, T = Ty for y = 0; u=u_ T=T fory= «(l.7)
2. The problem just formulated is solved numerically. The tip x =y =0
is a special point (in the neighborhood of this point the friction stress and
heat flux due to ordinary heat conduction behave as lﬁfg_), so that in order to
derive a single algorithm for numerical computation valid in the entire region
S we introduce the new independent variables

m uw rl).l T] l| p;t N

el S Y (L L L ‘ (2.1)
1
o-
and replace the stream function ¥ (x, y) by the new function f (&,n),

o= Vormapiz f 2-2)

As a result, all of the derivatives appearing in the conservation equations
become finite, and the functions f, u, and T which we are seeking in the new
variables, vary weakly along the plate so that computation can be effected with
a larger interval along { without loss of accuracy.

The boundary conditions for y = » must be considered at some finite dis-
tance from the plate where the functions u and T begin to differ from their
limiting values u_ and T_ by an amount not exceeding the difference scheme

error. In the new variables the thickness of the boundary layer varies weakly
and the solution may be sought in the standard region £ 2 0, 0 € n < n_.

Let us introduce the dimensionless quantities

3



u T : c A 1 g
u'=;—.T"=-§r P='£‘ P"‘—‘%"Cp':’c"’;’\;"'—','ﬂr‘ l'=T q'=°_1"‘l¢£i (2.3)

where the physical parameters accompanied by the subscript 1 signify their
values at the temperature T;. System (1.1)-(1.6) with boundary conditions (1.7)

in terms of dimensionless quantities may be written as [75
i | “'='a% - = 2.4
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The boundary conditions are
f=u"=0,T" =6; for n=0, u'=1, T' = 6_ for n=n_ (2.9)
where P; is the Prandtl number,
fe,m pe, Ty - u?
— T — o0
PI—T' &= ZGTl‘ll bt e T (2.10)

The expression for ¢ was obtained allowing for the fact that T' = e for

n>n. The heat fluxes can be found from the formulas

g = —2VE .,aT e (2.11)
w = TEmvEr Y o

A bl

hd

g, = 20:E; (1) — 208, (e — ) + 2 { TE, (v — 1) @t —
K [i]

%o
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(2.12)

3. From equation (2.8) we see that with small values of § the boundary
layer is optically transparent and that the smaller the value of € the longer
it remains transparent. The term related to radiation in energy equation (2.6)
is the product of £ by the bounded function ¢ ; with small £ it is small in
comparison with the other terms of the equation. Hence, the effect of radiation
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is small. As £ + 0 it disappears entirely. The temperature profile tends to
a self-similar profile in the absence of radiation. However, the singularity
at £ = 0 never vanishes entirely. Being bounded, the function & has unbounded

1
derivatives with respect to £. The first of its derivatives behaves as § 2.
In €. This is due to the fact that the optical thickness of the boundary layer
increases as ¥ £ (for small £). As a result, the function @ varies very abrupt-
ly.

4. Integrating by parts in the right side of equation (1.4) and applying
(1.5), we obtain an expression for Q. in dimensionless form,

i wyme (uois)
‘qr 3\1/3‘—2' +Vef. 234( 35&)—% :“:; . ( a=§";r ‘
: .i_i,?e:gsb‘ E.[Veﬁ(a-—ﬂ]dt-ﬁ S E.{V"(:-a) { (4.1)
If the quantity /EE- + 0, then the integrands in (4.1) tend to zero /

everywhere as Q'eg I a -t |)'1 exp ( -»/EE" d -t }) with exception of the
neighborhood of the point t = o tending to zero, where they are finite. As a

result, the corresponding terms are of the order (eg)’l. Therefore, withn/EE'

»> o~! the expression

(4.2)

may be used to approximate qr‘ instead of (2.12).

Thus, with large values ef the radiation flux outside the wall is obtained
to within the approximation of radiant heat conduction.

The situation near the wall in a layer of thickness measuring several
radiation path lengths is somewhat different (the thickness of such a layer in
the variables n, £ tends to zero as 1//€€E). Since L is the characteristic
dimension of the problem as 1/L > 0 (so that 1¥# ¢£ - 0), we obtain the follow-
ing expression for the radiation flux in this layer:

(4.3)

This expression differs from (4.2) by the factor {1 - 3

3 E4(T)], which varies




from 0.5 at the wall to 1 in the gas stream (for 1 = 4 its deviation from unity
is less than 0.4%). The ratio of heat fluxes is therefore given by the expres-
sion '

9% * 16 3 T 1
= =g [l-gEO3
L e E A

Thus, with small 1/L near a wall in a gas layer of a thickness measuring
several radiation path lengths there occurs a redistribution of the heat trans-
ferred by radiation and ordinary heat conduction in the direction of increasing
molecular heat flux, and a corresponding reduction of the radiation flux (the
total heat flux remains almost constant). This takes place as a result of a
more abrupt temperature drop toward the wall. The relative thickness of this
layer is small, however, so that the correct total heat flux can be obtained
by considering radiation in the radiant heat conduction approximation. The
radiation component of the heat flux will be exaggerated at least two-fold as
the parameter 1/L goes from zero to infinity. In [1] this drawback of the radi-
ant heat conduction approximation is at least partly removed by introducing a
thin layer next to the wall where the coefficient in the expression for the ra-
diation heat flux is one half of that in the remaining region.

5. System (2.4)-(2.8) with boundary conditions (2.9) will be solved by
the method of finite differences.

The flow region £ > 0, 0 < n < n_ = const is broken down into character-

istic strips of width h. We consider the arithmetic means of the required
function fp(fp = f, u', T') on the left (i - i)—-th and right i-th boundaries

of the strip

'f,‘;é’:’ffffﬁ;j}.ﬁ ) (5.1)

where the subscript i means that the function is taken for an £ equal to &

ih (1 =0, 1, 2,....). .

These mean values differ from the exact values on the mid-line of the strip

by an amount on the order of h?

System (2.4)-(2.6) with boundary conditions (2.9) is written out on the
mid-line 8f the characteristic strip; the exact values are replaced by the mean
values fp » and the derivatives with respect to £ by the difference analog

Lo, Tiv- iR
% - VPR

(5.2)

In order to avoid iteration, which increases computer time considerably if
radiation is present, and also to prevent an increase in the system approximation
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error, the quantity ¢ describing the radiation, as well as the quantities p'u',
p'A', cp' and the velocity u' in (2.4) — each of these quantities is replaced

by a linear combination of its values on the boundaries of the preceding /77

strip, so that the system approximation error remains on the order of h2,

=l (5.3)

where h; is the preceding interval, and h, is the new interval.

As a result, the system of linear partial differential equations (2.4)-
(2.6) is reduced to a system of linear ordinary differential equations

- ) - - . . L g

'; S (5.4)
v o
.. an (ew)® = . (5.5)
i .d o _dT® __/;._d_rl.f.(—
T gt s g TP 1
B R . - L ""f- Lanne : du,° " N . LR
. R Ooc L4 .=o -
3 +el(P“),(.d,q ) Yo ey (5.6)
_ The boundary conditions are
£2=u’=0,1°=06"°for n=0;u’ =1, 1°=672for n=n, (5.7)

This system is solved in the following sequence of steps. First, the
function f°(n) is found from equation (5.4). Next, equation (5.5) is solved
for u®(n). Finally, the function T°(n) is found from equation (5.6).

Once system (5.4)-(5.6) has been solved, the algebraic relations fpi =

2f£ © - f implied by (5.1) are used to find the values of the required func-

P psi"l
tions f, u', and T' for £ = Ei = ih to within an error on the order of h2.
To solve the linear system of ordinary differential equations (5.4)-(5.6)

the flow region in the plane £,n is broken down into n horizontal strips of
width A = n_/n, and each equation of (5.4)-(5.6) is approximated by a difference

equation of second-order exactness. The values of the function fo(n) for n = jA
are then found from the formula
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Instead of equations (5.5) and (5.6) we make use of the corresponding
difference equations

I(w), + (p»),ﬂ A 2 B f g — (O 20N
’ +(p»),,;+4, AL g o+ (O GR -4,

o = -—u. — fidl w4 T =0
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el (/) - fl u)l Tyt @ ‘—'Pl iT’“‘f T ZE‘A‘?‘Q? +3

- ) .
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/
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Each of the above is a second-order equation with known values of the func-
tions sought at both ends of the interval. They are solved by the sweep method.

The quantity (p'l'@).. is computed from the formula /78

o= (0 = Tf,'*w. (=) (Bt — T‘,") B (e,,.. -ea + !

Y l
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where vk-l

. ) 1
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—

The optical thickness 1., is computed from the difference analog of equa-
. 1]
tion (2.8),

<ty

| AT 1 + 1] i -
=S T VR T | T, TG U7
o = 0.

In order to begin computation it is necessary to know the velocity and
temperature profiles in the initial (£ = 0) and first (£ = h) sections. In
these sections the solution is sought by the successive approximation method.

6. The results of calculations are given for the case ew =1, 65 = 0.1,

= 0.2, Py =1, €1 = 0. The physical properties in this case were set constant
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-- the quantities p'u', p'A', cp , PU' were equated to unity. All of these con-

ditions correspond exactly to one of the variants considered in [1].

T/ 7 :
. £.0 %J
j}i i/ i
25— -
| 7-/
Y/
/4 . ’
an | 7
7 4 L ¢
Figure 1.

The problem was computed with an interval variable along £. The accuracy
was checked by repeated computation with other intervals both along £ and along
n. The initial computation was carried out for the following values of the in-
terval along £:

h = 0.002 for 0 <& <0.008
h = 0.004 for 0.008 <& <0.02
h = 0.008 for 0.02 < £ < 0.06
h = 0.02 for 0.06 <& <0.3
h = 0.1 for 0.3 g <5.1

The interval along n in this case was 0.4, and the value of n on the outer
boundary was 16. Computation on a computer required 5 minutes.

Repeated computation was carried out up to & = 3.1 for intervals half as
great both along £ and along n. The value of n_up to £ = 0.5 was set equal

to 13 and then increased to 16.

The maximum difference between the first and second computed values of the
temperature was 0.3%; the corresponding difference in the values of heat fluxes
to the wall was 0.7% (for £ = 3.1). The difference in the values of ¢ was as
high as several percent.




o 16 3.2 48 7.

Figure 2.

The results of computation are plotted in the figures. The broken curves
are taken from [1].

Figure 1 shows the temperature profiles with respect to the variable n for
various values of E£. With increasing { the temperature profile is deformed
from a self-similar profile without radiation into one which corresponds to the
consideration of the radiation in the approximation of nonlinear (radiant) heat
conduction. This deformation proceeds in such a way that the hot gas cools in
the presence of radiation while the gas near the wall heats up. On the physical
level this means that the hot gas cools more rapidly and the gas near the wall
cools more slowly (in comparison with the case where radiation is not consider-
ed). The reason for this is that the hot gas surrenders heat not only by way
of molecular heat conduction, but by radiation as well, and that the cold gas /79
near the wall absorbs more than it radiates (see Fig. 2 where the dependence _
on n of the guantity ¢ proportional to ~ qu/Bn is shown for various values of £).

Figure 3 shows the thickness of the boundary layer n, computed from a value
of the temperature which differs from the limiting value by 1%. With small £
one observes a very abrupt thickening of the boundary layer. Thereafter the
thickness of the boundary layer with respect to the variable n remains almost
constant and close to its limiting value (for £ - ).

75
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Figure 3. Figure 4.

Under the specified conditions the deformation of the temperature profile
with small values of £ proceeds abruptly due to the rapid increase in the opti-
cal thickness of the boundary layer (Fig. 3), terminating sooner in the interior
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of the flow. This latter fact means that the approximation of nonlinear heat
conduction for the radiation first becomes acceptable in the hottest portion of
the boundary layer. The same conclusion may be drawn from Fig. 4, where the
small circles identify the radiation heat fluxes computed in the nonlinear heat
conduction approximation on the basis of the non-selfsimilar temperature pro-
file for £ = 3.1.

\ '
:\L

Q] . 17

\q‘ 5—0.02 ) R L ,b’ ’0.6

N )
Z — \\ 05— 5T
1 \ S~ —
et ] — v
A\ 9 /! .
/. ) 7
0 [ é 3 [T 1 00 7 7 3 Y 5
Figure 5. Figure 6.

The region where the temperature profile is nearly linear contracts with
increasing £ in the presence of radiation. This may be seen immediately from

Fig. 1 as well as by considering Figs. 4 and 5 which show the fluxes of heat —_—

s . . . o
Q= q/on“ due to radiation q*, ordinary heat conduction q , and the total q

as a function of n for £ equal to 0.02 and 3.1. The molecular heat flux near
the wall diminishes more slowly for small values of £ and more rapidly for
large values of £. Since the heat flux due to ordinary heat conduction is pro—
portional to the slope of the temperature profile, the profile curvature in-
creases with increasing £.

The radiation flux varies weakly with respect to boundary layer thickness
for small values of £ (Fig. 5), since the boundary layer is still optically
transparent (Fig. 3). But with £ = 0.02 there is already a clearly distinguish-
able radiation flux maximum due to the fact that heat is originally transferred
by radiation, and that it is only near the wall that redistribution occurs with
heat being transferred by molecular heat conduction while the total heat flux
remains almost constant. This effect is more marked with large £. This is
clear from Fig. 6, where we see the proportion of the radiation flux as a func-
tion of n for various £. Within a relatively broad region of the boundary /80
layer the proportion of the radiation flux increases with £, rising at an es-
pecially high rate for smaller values of £. This growth in the radiation con-
tribution to heat transfer is due to the fact that the temperature profile in
this region becomes steeper. The situation is reversed near the wall: the
steepness of the profile increases and the proportion of radiated heat drops.
(For small £ the relative contribution of the radiation flux increases near the
wall as well due to the rapid decline of the molecular flux).

11



Figure 7.

Figure 7 shows the heat flux to the wall due to radiatiom, the heat flux
due to ordinary heat conduction, as well as the total flux. It also shows the
total heat fluxes with consideration of radiation in the nonlinear heat conduc-
tion approximation (from [1]). The difference under the comnditions in question
is somewhat in excess of 10%. The difference in the radiation component of the
heat flux is greater (for £ = 3.1, they differ by a factor of 40 under the
specified conditions).

In conclusion the author should like to thank A.T. Onufriyev for his useful
discussion of the material here presented.
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